1/TAN(3)[0.928+0.0038(-16-12.49)]

asked by guest
on Apr 07, 2025 at 6:55 am



You asked:

Evaluate the expression: 1tan(3)(0.928+0.0038(1612.49))\frac{1}{\tan\left( 3 \right) \left(0.928 + 0.0038 \left(-16 - 12.49\right)\right)}

MathBot Answer:

1tan(3)(0.928+0.0038(1612.49))=500000409869tan(3)8.5579203982669261025212340766519\frac{1}{\tan\left( 3 \right) \left(0.928 + 0.0038 \left(-16 - 12.49\right)\right)} = \frac{500000}{409869 \tan{\left(3 \right)}} \approx -8.5579203982669261025212340766519


1tan(3)(0.928+0.0038(1612.49))=1tan(3)(9281000+3810000(16(12+49100)))=1tan(3)(116125+3810000(16(12+49100)))=1tan(3)(116125+3810000(161249100))=1tan(3)(116125+38100002849100)=1tan(3)(116125+1950002849100)=1tan(3)(11612554131500000)=1tan(3)409869500000=1409869500000tan(3)=5000004098691tan(3)\begin{aligned}\frac{1}{\tan\left( 3 \right) \left(0.928 + 0.0038 \left(-16 - 12.49\right)\right)}&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{928}{1000} + \frac{38}{10000} \cdot \left(-16 - \left(12 + \frac{49}{100}\right)\right)\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{116}{125} + \frac{38}{10000} \cdot \left(-16 - \left(12 + \frac{49}{100}\right)\right)\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{116}{125} + \frac{38}{10000} \cdot \left(-16 - \frac{1249}{100}\right)\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{116}{125} + \frac{38}{10000} \cdot - \frac{2849}{100}\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{116}{125} + \frac{19}{5000} \cdot - \frac{2849}{100}\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \left(\frac{116}{125} - \frac{54131}{500000}\right)}\\&=\frac{1}{\tan{\left(3 \right)} \cdot \frac{409869}{500000}}\\&=\frac{1}{\frac{409869}{500000} \cdot \tan{\left(3 \right)}}\\&=\frac{500000}{409869} \cdot \frac{1}{\tan{\left(3 \right)}}\end{aligned}