solve the first order differential equation (x^4+2y)dx-xdy+0
You asked:
Evaluate the expression: \(\left({x}^{4} + 2 y\right) \cdot d x - x d y + 0\)
MathBot Answer:
Evaluated
\(\displaystyle \left({x}^{4} + 2 y\right) \cdot d x - x d y + 0 = - d x y + d x \left(x^{4} + 2 y\right) \)
Expanded
\[\left({x}^{4} + 2 y\right) \cdot d x - x d y + 0 = x^{5} d + d x y\]
Factored
\[\left({x}^{4} + 2 y\right) \cdot d x - x d y + 0 = d x \left(x^{4} + y\right)\]