tan x = 0.67

x=?

asked by guest
on Jan 22, 2025 at 2:20 pm



You asked:

Solve the equation \(\tan\left( x \right) = 0.67\) for the variable \(x\).

MathBot Answer:

The principal value in \(- \frac{\pi}{2} < x < \frac{\pi}{2}\) is \(x \approx 0.59030675\)


The real solutions are: \[\begin{aligned}x &= \left\{2 \pi n + \arctan{\left(\frac{67}{100} \right)}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 0.59030675\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\pi + 2 \pi n + \arctan{\left(\frac{67}{100} \right)}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 3.7318994\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}\]