(6 + 2i)(1 − 5i)/(7 + 4i)
You asked:
Evaluate the expression: \(\frac{\left(6 + 2 i\right) \left(1 - 5 i\right)}{7 + 4 i}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{\left(6 + 2 i\right) \left(1 - 5 i\right)}{7 + 4 i} = \frac{\left(1 - 5 i\right) \left(6 + 2 i\right) \left(7 - 4 i\right)}{65} \)
Expanded
\[\frac{\left(6 + 2 i\right) \left(1 - 5 i\right)}{7 + 4 i} = - 4 i\]
Factored
\[\frac{\left(6 + 2 i\right) \left(1 - 5 i\right)}{7 + 4 i} = \left(\frac{2}{65} - \frac{2 i}{13}\right) \left(3 + i\right) \left(7 - 4 i\right)\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).