1/(x^10) = 0.5

asked by guest
on Mar 30, 2025 at 9:41 am



You asked:

Solve the equation 1x10=0.5\frac{1}{{x}^{10}} = 0.5 for the variable xx.

MathBot Answer:

The solutions are given by the formula: x=210cos(πk5)+210sin(πk5)ix = \sqrt[10]{2} \cos{\left(\frac{\pi k}{5} \right)} + \sqrt[10]{2} \sin{\left(\frac{\pi k}{5} \right)} i where kk is an integer in 0k<100 \le k < 10.

There are 22 real solutions.

There are 88 solutions with nonzero imaginary part.


Real solutions: x=2101.0717735x=2101.0717735\begin{aligned}x &= \sqrt[10]{2} \\&\approx 1.0717735\\x &= - \sqrt[10]{2} \\&\approx -1.0717735\end{aligned}


Solutions with nonzero imaginary part: x=210(14+54)+210i58580.86708295+0.62997263ix=210(14+54)+210i58+580.33119621+1.0193171ix=210(1454)+210i58+580.33119621+1.0193171ix=210(5414)+210i58580.86708295+0.62997263ix=210(5414)210i58580.867082950.62997263ix=210(1454)210i58+580.331196211.0193171ix=210(14+54)210i58+580.331196211.0193171ix=210(14+54)210i58580.867082950.62997263i\begin{aligned}x &= \sqrt[10]{2} \cdot \left(\frac{1}{4} + \frac{\sqrt{5}}{4}\right) + \sqrt[10]{2} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \\&\approx 0.86708295 + 0.62997263 i\\x &= \sqrt[10]{2} \left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right) + \sqrt[10]{2} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} \\&\approx 0.33119621 + 1.0193171 i\\x &= \sqrt[10]{2} \cdot \left(\frac{1}{4} - \frac{\sqrt{5}}{4}\right) + \sqrt[10]{2} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} \\&\approx -0.33119621 + 1.0193171 i\\x &= \sqrt[10]{2} \left(- \frac{\sqrt{5}}{4} - \frac{1}{4}\right) + \sqrt[10]{2} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \\&\approx -0.86708295 + 0.62997263 i\\x &= \sqrt[10]{2} \left(- \frac{\sqrt{5}}{4} - \frac{1}{4}\right) - \sqrt[10]{2} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \\&\approx -0.86708295 -0.62997263 i\\x &= \sqrt[10]{2} \cdot \left(\frac{1}{4} - \frac{\sqrt{5}}{4}\right) - \sqrt[10]{2} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} \\&\approx -0.33119621 -1.0193171 i\\x &= \sqrt[10]{2} \left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right) - \sqrt[10]{2} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} \\&\approx 0.33119621 -1.0193171 i\\x &= \sqrt[10]{2} \cdot \left(\frac{1}{4} + \frac{\sqrt{5}}{4}\right) - \sqrt[10]{2} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} \\&\approx 0.86708295 -0.62997263 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.