0.5458*V^4-23.22*10^7=0
You asked:
MathBot Answer:
The solutions are given by the formula: \[V = \frac{100 \cdot 2729^{\frac{3}{4}} \cdot \sqrt[4]{11610} \cos{\left(\frac{\pi k}{2} \right)}}{2729} + \frac{100 \cdot 2729^{\frac{3}{4}} \cdot \sqrt[4]{11610} \sin{\left(\frac{\pi k}{2} \right)}}{2729} i\] where \(k\) is an integer in \(0 \le k < 4\).
There are \(2\) real solutions.
There are \(2\) solutions with nonzero imaginary part.
Real solutions: \[\begin{aligned}V &= \frac{100 \cdot 2729^{\frac{3}{4}} \cdot \sqrt[4]{11610}}{2729} \\&\approx 143.61744\\V &= - \frac{100 \cdot 2729^{\frac{3}{4}} \cdot \sqrt[4]{11610}}{2729} \\&\approx -143.61744\end{aligned}\]
Solutions with nonzero imaginary part: \[\begin{aligned}V &= \frac{100 \cdot \sqrt[4]{11610} \cdot 2729^{\frac{3}{4}}}{2729} i \\&\approx 143.61744 i\\V &= - \frac{100 \cdot \sqrt[4]{11610} \cdot 2729^{\frac{3}{4}}}{2729} i \\&\approx -143.61744 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).