2 (x³+4x²+x-6)(3x²+8x+1)
You asked:
Evaluate the expression: \(2 \cdot \left({x}^{3} + 4 \cdot {x}^{2} + x - 6\right) \cdot \left(3 \cdot {x}^{2} + 8 x + 1\right)\)
MathBot Answer:
Evaluated
\(\displaystyle 2 \cdot \left({x}^{3} + 4 \cdot {x}^{2} + x - 6\right) \cdot \left(3 \cdot {x}^{2} + 8 x + 1\right) = 2 \cdot \left(3 x^{2} + 8 x + 1\right) \left(x^{3} + 4 x^{2} + x - 6\right) \)
Expanded
\[2 \cdot \left({x}^{3} + 4 \cdot {x}^{2} + x - 6\right) \cdot \left(3 \cdot {x}^{2} + 8 x + 1\right) = 6 x^{5} + 40 x^{4} + 72 x^{3} - 12 x^{2} - 94 x - 12\]
Factored
\[2 \cdot \left({x}^{3} + 4 \cdot {x}^{2} + x - 6\right) \cdot \left(3 \cdot {x}^{2} + 8 x + 1\right) = 2 \left(x - 1\right) \left(x + 2\right) \left(x + 3\right) \left(3 x^{2} + 8 x + 1\right)\]