2 (x³+4x²+x-6)(3x²+8x+1)

asked by guest
on Nov 10, 2024 at 11:14 am



You asked:

Evaluate the expression: \(2 \cdot \left({x}^{3} + 4 \cdot {x}^{2} + x - 6\right) \cdot \left(3 \cdot {x}^{2} + 8 x + 1\right)\)

MathBot Answer:

Evaluated



\(\displaystyle 2 \cdot \left({x}^{3} + 4 \cdot {x}^{2} + x - 6\right) \cdot \left(3 \cdot {x}^{2} + 8 x + 1\right) = 2 \cdot \left(3 x^{2} + 8 x + 1\right) \left(x^{3} + 4 x^{2} + x - 6\right) \)


Expanded

\[2 \cdot \left({x}^{3} + 4 \cdot {x}^{2} + x - 6\right) \cdot \left(3 \cdot {x}^{2} + 8 x + 1\right) = 6 x^{5} + 40 x^{4} + 72 x^{3} - 12 x^{2} - 94 x - 12\]


Factored

\[2 \cdot \left({x}^{3} + 4 \cdot {x}^{2} + x - 6\right) \cdot \left(3 \cdot {x}^{2} + 8 x + 1\right) = 2 \left(x - 1\right) \left(x + 2\right) \left(x + 3\right) \left(3 x^{2} + 8 x + 1\right)\]