p= 3 + 1/p

Find value of

4p/ (p²-p+1)

asked by guest
on Jan 13, 2025 at 10:32 am



MathBot Answer:

4pp2p+1=4(3+1p)(3+1p)221p\frac{4 p}{{p}^{2} - p + 1} = \frac{4 \cdot \left(3 + \frac{1}{p}\right)}{\left(3 + \frac{1}{p}\right)^{2} - 2 - \frac{1}{p}}


4pp2p+1=4(3+1p)(13+1p+(3+1p)2)1=4(1p+3)((1p+3)2+11p+3)=4(1p+3)1p2+6p+9+11p+3=4(1p+3)3p1p+1p2+6p+9+1=4(1p+3)1p2+6p+3p1p+10=4(1p+3)1p2+5p+7=4(3+1p)(3+1p)221p\begin{aligned}\frac{4 p}{p^{2} - p + 1}&=4 \cdot \left(3 + \frac{1}{p}\right) \left(1 - 3 + \frac{1}{p} + \left(3 + \frac{1}{p}\right)^{2}\right)^{-1}\\&=\frac{4 \cdot \left(\frac{1}{p} + 3\right)}{\left(\left(\frac{1}{p} + 3\right)^{2} + 1 - \frac{1}{p} + 3\right)}\\&=\frac{4 \cdot \left(\frac{1}{p} + 3\right)}{\frac{1}{p^{2}} + \frac{6}{p} + 9 + 1 - \frac{1}{p} + 3}\\&=\frac{4 \cdot \left(\frac{1}{p} + 3\right)}{\frac{- 3 p - 1}{p} + \frac{1}{p^{2}} + \frac{6}{p} + 9 + 1}\\&=\frac{4 \cdot \left(\frac{1}{p} + 3\right)}{\frac{1}{p^{2}} + \frac{6}{p} + \frac{- 3 p - 1}{p} + 10}\\&=\frac{4 \cdot \left(\frac{1}{p} + 3\right)}{\frac{1}{p^{2}} + \frac{5}{p} + 7}\\&=\frac{4 \cdot \left(3 + \frac{1}{p}\right)}{\left(3 + \frac{1}{p}\right)^{2} - 2 - \frac{1}{p}}\end{aligned}