-\left(\frac{3}{6}\right)\log\left(\frac{3}{6}\right)-\left(\frac{3}{6}\right)\log\left(\frac{3}{6}\right)

asked by guest
on Apr 06, 2025 at 6:44 am



You asked:

Evaluate the expression: (36log(3636log(36)))-\left( \frac{3}{6} \log\left( \frac{3}{6} - \frac{3}{6} \log\left( \frac{3}{6} \right) \right) \right)

MathBot Answer:

(36log(3636log(36)))=log(log(2)2+12)20.08327907321045041376156441588369-\left( \frac{3}{6} \log\left( \frac{3}{6} - \frac{3}{6} \log\left( \frac{3}{6} \right) \right) \right) = - \frac{\log{\left(\frac{\log{\left(2 \right)}}{2} + \frac{1}{2} \right)}}{2} \approx 0.08327907321045041376156441588369


(36log(3636log(36)))=36log(3636log(36))=36log(3612log(36))\begin{aligned}-\left( \frac{3}{6} \log\left( \frac{3}{6} - \frac{3}{6} \log\left( \frac{3}{6} \right) \right) \right)&=- \frac{3}{6} \cdot \log{\left(\frac{3}{6} - \frac{3}{6} \cdot \log{\left(\frac{3}{6} \right)} \right)}\\&=- \frac{3}{6} \cdot \log{\left(\frac{3}{6} - \frac{1}{2} \cdot \log{\left(\frac{3}{6} \right)} \right)}\end{aligned}