−(3⋅0.1log

2

(0.1)+3⋅0.15log

2

(0.15)+2⋅0.125log

2

(0.125))

asked by guest
on Nov 24, 2024 at 7:54 am



You asked:

Evaluate the expression: (30.1log(2)0.1+30.15log(2)0.15+20.125log(2)0.125)-\left( 3 \cdot 0.1 \log\left( 2 \right) \cdot 0.1 + 3 \cdot 0.15 \log\left( 2 \right) \cdot 0.15 + 2 \cdot 0.125 \log\left( 2 \right) \cdot 0.125 \right)

MathBot Answer:

(30.1log(2)0.1+30.15log(2)0.15+20.125log(2)0.125)=103log(2)8000.08924269949709295858746863563774-\left( 3 \cdot 0.1 \log\left( 2 \right) \cdot 0.1 + 3 \cdot 0.15 \log\left( 2 \right) \cdot 0.15 + 2 \cdot 0.125 \log\left( 2 \right) \cdot 0.125 \right) = - \frac{103 \log{\left(2 \right)}}{800} \approx -0.08924269949709295858746863563774


(30.1log(2)0.1+30.15log(2)0.15+20.125log(2)0.125)=(3110log(2)110+315100log(2)15100+21251000log(2)1251000)=(310log(2)110+315100log(2)15100+21251000log(2)1251000)=(3100log(2)+315100log(2)15100+21251000log(2)1251000)=(3100log(2)+45100log(2)15100+21251000log(2)1251000)=(3100log(2)+920log(2)15100+21251000log(2)1251000)=(3100log(2)+274log(2)1100+21251000log(2)1251000)=(3100log(2)+27400log(2)+21251000log(2)1251000)=(3100log(2)+27400log(2)+2501000log(2)1251000)=(3100log(2)+27400log(2)+14log(2)1251000)=(3100log(2)+27400log(2)+1254log(2)11000)=(3100log(2)+27400log(2)+132log(2))=(39400log(2)+132log(2))=103800log(2)\begin{aligned}-\left( 3 \cdot 0.1 \log\left( 2 \right) \cdot 0.1 + 3 \cdot 0.15 \log\left( 2 \right) \cdot 0.15 + 2 \cdot 0.125 \log\left( 2 \right) \cdot 0.125 \right)&=- \left(3 \cdot \frac{1}{10} \cdot \log{\left(2 \right)} \cdot \frac{1}{10} + 3 \cdot \frac{15}{100} \cdot \log{\left(2 \right)} \cdot \frac{15}{100} + 2 \cdot \frac{125}{1000} \cdot \log{\left(2 \right)} \cdot \frac{125}{1000}\right)\\&=- \left(\frac{3}{10} \cdot \log{\left(2 \right)} \cdot \frac{1}{10} + 3 \cdot \frac{15}{100} \cdot \log{\left(2 \right)} \cdot \frac{15}{100} + 2 \cdot \frac{125}{1000} \cdot \log{\left(2 \right)} \cdot \frac{125}{1000}\right)\\&=- \left(\frac{3}{100} \cdot \log{\left(2 \right)} + 3 \cdot \frac{15}{100} \cdot \log{\left(2 \right)} \cdot \frac{15}{100} + 2 \cdot \frac{125}{1000} \cdot \log{\left(2 \right)} \cdot \frac{125}{1000}\right)\\&=- \left(\frac{3}{100} \cdot \log{\left(2 \right)} + \frac{45}{100} \cdot \log{\left(2 \right)} \cdot \frac{15}{100} + 2 \cdot \frac{125}{1000} \cdot \log{\left(2 \right)} \cdot \frac{125}{1000}\right)\\&=- \left(\frac{3}{100} \cdot \log{\left(2 \right)} + \frac{9}{20} \cdot \log{\left(2 \right)} \cdot \frac{15}{100} + 2 \cdot \frac{125}{1000} \cdot \log{\left(2 \right)} \cdot \frac{125}{1000}\right)\\&=- \left(\frac{3}{100} \cdot \log{\left(2 \right)} + \frac{27}{4} \cdot \log{\left(2 \right)} \cdot \frac{1}{100} + 2 \cdot \frac{125}{1000} \cdot \log{\left(2 \right)} \cdot \frac{125}{1000}\right)\\&=- \left(\frac{3}{100} \cdot \log{\left(2 \right)} + \frac{27}{400} \cdot \log{\left(2 \right)} + 2 \cdot \frac{125}{1000} \cdot \log{\left(2 \right)} \cdot \frac{125}{1000}\right)\\&=- \left(\frac{3}{100} \cdot \log{\left(2 \right)} + \frac{27}{400} \cdot \log{\left(2 \right)} + \frac{250}{1000} \cdot \log{\left(2 \right)} \cdot \frac{125}{1000}\right)\\&=- \left(\frac{3}{100} \cdot \log{\left(2 \right)} + \frac{27}{400} \cdot \log{\left(2 \right)} + \frac{1}{4} \cdot \log{\left(2 \right)} \cdot \frac{125}{1000}\right)\\&=- \left(\frac{3}{100} \cdot \log{\left(2 \right)} + \frac{27}{400} \cdot \log{\left(2 \right)} + \frac{125}{4} \cdot \log{\left(2 \right)} \cdot \frac{1}{1000}\right)\\&=- \left(\frac{3}{100} \cdot \log{\left(2 \right)} + \frac{27}{400} \cdot \log{\left(2 \right)} + \frac{1}{32} \cdot \log{\left(2 \right)}\right)\\&=- \left(\frac{39}{400} \cdot \log{\left(2 \right)} + \frac{1}{32} \cdot \log{\left(2 \right)}\right)\\&=- \frac{103}{800} \cdot \log{\left(2 \right)}\end{aligned}