cos-1 (16/8.97)
You asked:
Evaluate the expression: \(\cos\left( -1 \right) \cdot \frac{16}{8.97}\)
MathBot Answer:
\[\cos\left( -1 \right) \cdot \frac{16}{8.97} = \frac{1600 \cos{\left(1 \right)}}{897} \approx 0.96374993242923472446097945586261\]
\[\begin{aligned}\cos\left( -1 \right) \cdot \frac{16}{8.97}& = \cos{\left(-1 \right)} \cdot 16 \cdot \frac{1}{8 + \frac{97}{100}}\\& = \cos{\left(1 \right)} \cdot 16 \cdot \frac{1}{8 + \frac{97}{100}}\\& = \cos{\left(1 \right)} \cdot 16 \cdot \frac{1}{\frac{897}{100}}\\& = \cos{\left(1 \right)} \cdot \frac{1600}{897}\\& = \frac{1600}{897} \cdot \cos{\left(1 \right)}\end{aligned}\]