(sin(2x)/sin(x)) - (cos(2x)/cos(x))

asked by guest
on Nov 26, 2024 at 12:26 am



You asked:

Evaluate the expression: \(\frac{\sin\left( 2 x \right)}{\sin\left( x \right)} - \frac{\cos\left( 2 x \right)}{\cos\left( x \right)}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{\sin\left( 2 x \right)}{\sin\left( x \right)} - \frac{\cos\left( 2 x \right)}{\cos\left( x \right)} = \frac{\sin{\left(2 x \right)}}{\sin{\left(x \right)}} - \frac{\cos{\left(2 x \right)}}{\cos{\left(x \right)}} \)


Factored

\[\frac{\sin\left( 2 x \right)}{\sin\left( x \right)} - \frac{\cos\left( 2 x \right)}{\cos\left( x \right)} = - \frac{- \sin{\left(2 x \right)} \cos{\left(x \right)} + \sin{\left(x \right)} \cos{\left(2 x \right)}}{\sin{\left(x \right)} \cos{\left(x \right)}}\]