3p/(12pq+4q) รท 8p^2/(6p^2 + 2pq)

asked by guest
on Nov 18, 2024 at 9:29 am



You asked:

Evaluate the expression: \(\frac{\frac{\frac{3 p}{12 p q + 4 q}}{8 \cdot {p}^{2}}}{6 \cdot {p}^{2} + 2 p q}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{\frac{\frac{3 p}{12 p q + 4 q}}{8 \cdot {p}^{2}}}{6 \cdot {p}^{2} + 2 p q} = \frac{3}{8 p \left(6 p^{2} + 2 p q\right) \left(12 p q + 4 q\right)} \)


Expanded

\[\frac{\frac{\frac{3 p}{12 p q + 4 q}}{8 \cdot {p}^{2}}}{6 \cdot {p}^{2} + 2 p q} = \frac{3 p}{576 p^{5} q + 192 p^{4} q^{2} + 192 p^{4} q + 64 p^{3} q^{2}}\]


Factored

\[\frac{\frac{\frac{3 p}{12 p q + 4 q}}{8 \cdot {p}^{2}}}{6 \cdot {p}^{2} + 2 p q} = \frac{3}{64 p^{2} q \left(3 p + 1\right) \left(3 p + q\right)}\]