X^4+X^2+1=0 then X^4+1/X^4=?
You asked:
MathBot Answer:
\(X^{4} + \frac{1}{X^{4}} \in \left\{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right)^{4} + \frac{1}{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right)^{4}}, \frac{1}{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right)^{4}} + \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right)^{4}, \frac{1}{\left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right)^{4}} + \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right)^{4}, \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)^{4} + \frac{1}{\left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)^{4}}\right\}\)
\(i\) is the imaginary unit, defined as \(i^2 = -1\).
By substituting this value into the expression, we find that: $$\begin{aligned}X^{4} + \frac{1}{X^{4}} &= \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right)^{4} + \frac{1}{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right)^{4}}\\&= \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right)^{4} + \frac{1}{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right)^{4}}\end{aligned}$$