(2x ^ { 4 } -x ^ { 3 } +6x ^ { 2 } -3x+1) \div (x+2)

asked by guest
on Mar 26, 2025 at 8:32 pm



You asked:

Evaluate the expression: 2x4x3+6x23x+1x+2\frac{2 {x}^{4} - {x}^{3} + 6 {x}^{2} - 3 x + 1}{x + 2}

MathBot Answer:

Evaluated



2x4x3+6x23x+1x+2=2x4x3+6x23x+1x+2\displaystyle \frac{2 {x}^{4} - {x}^{3} + 6 {x}^{2} - 3 x + 1}{x + 2} = \frac{2 x^{4} - x^{3} + 6 x^{2} - 3 x + 1}{x + 2}


Expanded

2x4x3+6x23x+1x+2=2x4x+2x3x+2+6x2x+23xx+2+1x+2\frac{2 {x}^{4} - {x}^{3} + 6 {x}^{2} - 3 x + 1}{x + 2} = \frac{2 x^{4}}{x + 2} - \frac{x^{3}}{x + 2} + \frac{6 x^{2}}{x + 2} - \frac{3 x}{x + 2} + \frac{1}{x + 2}