(81 x 3x+13^{x+1} -9 x 3x3^{x} ) / (81 x 3x+23^{x+2} -3 x 3x+23^{x+2} )

asked by guest
on Apr 05, 2025 at 1:07 am



You asked:

Evaluate the expression: 81x3x+19x3x81x3x+23x3x+2\frac{81 x \cdot {3}^{x + 1} - 9 x \cdot {3}^{x}}{81 x \cdot {3}^{x + 2} - 3 x \cdot {3}^{x + 2}}

MathBot Answer:

Evaluated



81x3x+19x3x81x3x+23x3x+2=3x2(93xx+813x+1x)78x\displaystyle \frac{81 x \cdot {3}^{x + 1} - 9 x \cdot {3}^{x}}{81 x \cdot {3}^{x + 2} - 3 x \cdot {3}^{x + 2}} = \frac{3^{- x - 2} \left(- 9 \cdot 3^{x} x + 81 \cdot 3^{x + 1} x\right)}{78 x}


Expanded

81x3x+19x3x81x3x+23x3x+2=13\frac{81 x \cdot {3}^{x + 1} - 9 x \cdot {3}^{x}}{81 x \cdot {3}^{x + 2} - 3 x \cdot {3}^{x + 2}} = \frac{1}{3}


Factored

81x3x+19x3x81x3x+23x3x+2=33x3x2\frac{81 x \cdot {3}^{x + 1} - 9 x \cdot {3}^{x}}{81 x \cdot {3}^{x + 2} - 3 x \cdot {3}^{x + 2}} = 3 \cdot 3^{x} 3^{- x - 2}