11X - (x^2 +4x/ln(x))+20

asked by guest
on Nov 25, 2024 at 3:22 pm



You asked:

Evaluate the expression: \(11 X - \left({x}^{2} + \frac{4 x}{\ln\left( x \right)}\right) + 20\)

MathBot Answer:

Evaluated



\(\displaystyle 11 X - \left({x}^{2} + \frac{4 x}{\ln\left( x \right)}\right) + 20 = 11 X - x^{2} - \frac{4 x}{\log{\left(x \right)}} + 20 \)


Expanded

\[11 X - \left({x}^{2} + \frac{4 x}{\ln\left( x \right)}\right) + 20 = 11 X - x^{2} - \frac{4 x}{\log{\left(x \right)}} + 20\]


Factored

\[11 X - \left({x}^{2} + \frac{4 x}{\ln\left( x \right)}\right) + 20 = \frac{11 X \log{\left(x \right)} - x^{2} \log{\left(x \right)} - 4 x + 20 \log{\left(x \right)}}{\log{\left(x \right)}}\]