11X - (x^2 +4x/ln(x))+20
You asked:
Evaluate the expression: \(11 X - \left({x}^{2} + \frac{4 x}{\ln\left( x \right)}\right) + 20\)
MathBot Answer:
Evaluated
\(\displaystyle 11 X - \left({x}^{2} + \frac{4 x}{\ln\left( x \right)}\right) + 20 = 11 X - x^{2} - \frac{4 x}{\log{\left(x \right)}} + 20 \)
Expanded
\[11 X - \left({x}^{2} + \frac{4 x}{\ln\left( x \right)}\right) + 20 = 11 X - x^{2} - \frac{4 x}{\log{\left(x \right)}} + 20\]
Factored
\[11 X - \left({x}^{2} + \frac{4 x}{\ln\left( x \right)}\right) + 20 = \frac{11 X \log{\left(x \right)} - x^{2} \log{\left(x \right)} - 4 x + 20 \log{\left(x \right)}}{\log{\left(x \right)}}\]