simplify $\frac{\ 3s}{\ (s-2)(s-2)}$-$\frac{\ 2}{\ s}$+$\frac{\ s+4}{\ 2s-s*s}$
You asked:
Simplify the expression: \(\frac{3 s}{\left(s - 2\right) \cdot \left(s - 2\right)} - \frac{2}{s} + \frac{s + 4}{2 s - s s}\)
MathBot Answer:
Simplified:
\[ \frac{3 s}{\left(s - 2\right) \cdot \left(s - 2\right)} - \frac{2}{s} + \frac{s + 4}{2 s - s s} = \frac{6}{s^{2} - 4 s + 4} \]
Expanded:
\[ \frac{3 s}{\left(s - 2\right) \cdot \left(s - 2\right)} - \frac{2}{s} + \frac{s + 4}{2 s - s s} = \frac{3 s}{s^{2} - 4 s + 4} + \frac{s}{- s^{2} + 2 s} + \frac{4}{- s^{2} + 2 s} - \frac{2}{s} \]
Factored:
\[ \frac{3 s}{\left(s - 2\right) \cdot \left(s - 2\right)} - \frac{2}{s} + \frac{s + 4}{2 s - s s} = \frac{6}{\left(s - 2\right)^{2}} \]