simplify $\frac{\ 3s}{\ (s-2)(s-2)}$-$\frac{\ 2}{\ s}$+$\frac{\ s+4}{\ 2s-s*s}$

asked by guest
on Nov 18, 2024 at 11:28 am



You asked:

Simplify the expression: \(\frac{3 s}{\left(s - 2\right) \cdot \left(s - 2\right)} - \frac{2}{s} + \frac{s + 4}{2 s - s s}\)

MathBot Answer:

Simplified:

\[ \frac{3 s}{\left(s - 2\right) \cdot \left(s - 2\right)} - \frac{2}{s} + \frac{s + 4}{2 s - s s} = \frac{6}{s^{2} - 4 s + 4} \]


Expanded:

\[ \frac{3 s}{\left(s - 2\right) \cdot \left(s - 2\right)} - \frac{2}{s} + \frac{s + 4}{2 s - s s} = \frac{3 s}{s^{2} - 4 s + 4} + \frac{s}{- s^{2} + 2 s} + \frac{4}{- s^{2} + 2 s} - \frac{2}{s} \]


Factored:

\[ \frac{3 s}{\left(s - 2\right) \cdot \left(s - 2\right)} - \frac{2}{s} + \frac{s + 4}{2 s - s s} = \frac{6}{\left(s - 2\right)^{2}} \]