\(\frac{k(k+3)}{4(k+1)(k+2)}+\frac{1}{k(k+1)(k+2)}\)
You asked:
MathBot Answer:
Evaluated
\(\displaystyle \frac{k \cdot \left(k + 3\right)}{4 \cdot \left(k + 1\right) \cdot \left(k + 2\right)} + \frac{1}{k \cdot \left(k + 1\right) \cdot \left(k + 2\right)} = \frac{k \left(k + 3\right)}{4 \left(k + 1\right) \left(k + 2\right)} + \frac{1}{k \left(k + 1\right) \left(k + 2\right)} \)
Expanded
\[\frac{k \cdot \left(k + 3\right)}{4 \cdot \left(k + 1\right) \cdot \left(k + 2\right)} + \frac{1}{k \cdot \left(k + 1\right) \cdot \left(k + 2\right)} = \frac{k^{2}}{4 k^{2} + 12 k + 8} + \frac{3 k}{4 k^{2} + 12 k + 8} + \frac{1}{k^{3} + 3 k^{2} + 2 k}\]
Factored
\[\frac{k \cdot \left(k + 3\right)}{4 \cdot \left(k + 1\right) \cdot \left(k + 2\right)} + \frac{1}{k \cdot \left(k + 1\right) \cdot \left(k + 2\right)} = \frac{k^{3} + 3 k^{2} + 4}{4 k \left(k + 1\right) \left(k + 2\right)}\]