-0.7836 = -0.3752x + 0.0417x $x^{2}$
You asked:
Given \(-0.7836 = -\left( 0.3752 x \right) + 0.0417 x\) evaluate the expression \({x}^{2}\).
MathBot Answer:
\[x^{2} = \frac{61402896}{11122225}\]
\[\begin{aligned}0.7836 &= 0.3335 x\\0.3335 x &= 0.7836\\x &= \frac{7836}{3335}\end{aligned}\]
By substituting this value into the expression, we find that: $$\begin{aligned}x^{2} &= \left(\frac{7836}{3335}\right)^{2}\\&= \frac{61402896}{11122225}\end{aligned}$$