exp(38.244) *8*10^28

asked by guest
on Nov 18, 2024 at 7:26 am



You asked:

Evaluate the expression: \({e}^{38.244} \cdot 8 \cdot {10}^{28}\)

MathBot Answer:

\[{e}^{38.244} \cdot 8 \cdot {10}^{28} = 80000000000000000000000000000 e^{\frac{9561}{250}} \approx 3252731031252089144700503477947252684442822127.45223617005332358215832395806941\]


\[\begin{aligned}{e}^{38.244} \cdot 8 \cdot {10}^{28}& = e^{38 + \frac{244}{1000}} \cdot 8 \cdot 10^{28}\\& = e^{38 + \frac{61}{250}} \cdot 8 \cdot 10^{28}\\& = e^{\frac{9561}{250}} \cdot 8 \cdot 10^{28}\\& = e^{\frac{9561}{250}} \cdot 8 \cdot 10000000000000000000000000000\\& = 8 \cdot e^{\frac{9561}{250}} \cdot 10000000000000000000000000000\\& = 80000000000000000000000000000 \cdot e^{\frac{9561}{250}}\end{aligned}\]


\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).