Find x(n) if, X(e ^ (jw)) = 1/(1 - 3 * (e) ^ (- j * w))
You asked:
Given \(X\left( {e}^{j w} \right) = \frac{1}{1 - 3 \cdot {e}^{-j \cdot w}}\) evaluate the expression \(x\left( n \right)\).
MathBot Answer:
The expression \(x\left( n \right)\) does not depend on the equation \(X\left( {e}^{j w} \right) = \frac{1}{1 - 3 \cdot {e}^{-j \cdot w}}\).