$\sqrt{ $\sqrt{\44/5/4Box}$ }$

asked by guest
on Nov 16, 2024 at 7:48 am



You asked:

Evaluate the expression: 4454Box\sqrt{\sqrt{\frac{\frac{44}{5}}{4 B o x}}}

MathBot Answer:

Evaluated



4454Box=1145341Box45\displaystyle \sqrt{\sqrt{\frac{\frac{44}{5}}{4 B o x}}} = \frac{\sqrt[4]{11} \cdot 5^{\frac{3}{4}} \sqrt[4]{\frac{1}{B o x}}}{5}


Roots

4454Box=i(114534im(eiatan2(11im(Box)5((re(Box))2+(im(Box))2),11re(Box)5((re(Box))2+(im(Box))2))2(re(Box))4+2(re(Box))2(im(Box))2+(im(Box))44(re(Box))2+(im(Box))28)5)114534re(eiatan2(11im(Box)5((re(Box))2+(im(Box))2),11re(Box)5((re(Box))2+(im(Box))2))2(re(Box))4+2(re(Box))2(im(Box))2+(im(Box))44(re(Box))2+(im(Box))28)51.21788328563091re(eiatan2(11im(Box)5((re(Box))2+(im(Box))2),11re(Box)5((re(Box))2+(im(Box))2))2(re(Box))4+2(re(Box))2(im(Box))2+(im(Box))44(re(Box))2+(im(Box))28)1.21788328563091iim(eiatan2(11im(Box)5((re(Box))2+(im(Box))2),11re(Box)5((re(Box))2+(im(Box))2))2(re(Box))4+2(re(Box))2(im(Box))2+(im(Box))44(re(Box))2+(im(Box))28)\sqrt{\sqrt{\frac{\frac{44}{5}}{4 B o x}}} = i \left(- \frac{\sqrt[4]{11} \cdot 5^{\frac{3}{4}} \operatorname{im}{\left(\sqrt{\frac{e^{\frac{i \operatorname{atan_{2}}{\left(- \frac{11 \operatorname{im}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)},\frac{11 \operatorname{re}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)} \right)}}{2}}}{\sqrt[4]{\left(\operatorname{re}{\left(B o x\right)}\right)^{4} + 2 \left(\operatorname{re}{\left(B o x\right)}\right)^{2} \left(\operatorname{im}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{4}}}} \sqrt[8]{\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}}\right)}}{5}\right) - \frac{\sqrt[4]{11} \cdot 5^{\frac{3}{4}} \operatorname{re}{\left(\sqrt{\frac{e^{\frac{i \operatorname{atan_{2}}{\left(- \frac{11 \operatorname{im}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)},\frac{11 \operatorname{re}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)} \right)}}{2}}}{\sqrt[4]{\left(\operatorname{re}{\left(B o x\right)}\right)^{4} + 2 \left(\operatorname{re}{\left(B o x\right)}\right)^{2} \left(\operatorname{im}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{4}}}} \sqrt[8]{\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}}\right)}}{5} \approx - 1.21788328563091 \operatorname{re}{\left(\sqrt{\frac{e^{\frac{i \operatorname{atan_{2}}{\left(- \frac{11 \operatorname{im}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)},\frac{11 \operatorname{re}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)} \right)}}{2}}}{\sqrt[4]{\left(\operatorname{re}{\left(B o x\right)}\right)^{4} + 2 \left(\operatorname{re}{\left(B o x\right)}\right)^{2} \left(\operatorname{im}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{4}}}} \sqrt[8]{\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}}\right)} - 1.21788328563091 i \operatorname{im}{\left(\sqrt{\frac{e^{\frac{i \operatorname{atan_{2}}{\left(- \frac{11 \operatorname{im}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)},\frac{11 \operatorname{re}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)} \right)}}{2}}}{\sqrt[4]{\left(\operatorname{re}{\left(B o x\right)}\right)^{4} + 2 \left(\operatorname{re}{\left(B o x\right)}\right)^{2} \left(\operatorname{im}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{4}}}} \sqrt[8]{\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}}\right)}4454Box=i114534im(eiatan2(11im(Box)5((re(Box))2+(im(Box))2),11re(Box)5((re(Box))2+(im(Box))2))2(re(Box))4+2(re(Box))2(im(Box))2+(im(Box))44(re(Box))2+(im(Box))28)5+114534re(eiatan2(11im(Box)5((re(Box))2+(im(Box))2),11re(Box)5((re(Box))2+(im(Box))2))2(re(Box))4+2(re(Box))2(im(Box))2+(im(Box))44(re(Box))2+(im(Box))28)51.21788328563091re(eiatan2(11im(Box)5((re(Box))2+(im(Box))2),11re(Box)5((re(Box))2+(im(Box))2))2(re(Box))4+2(re(Box))2(im(Box))2+(im(Box))44(re(Box))2+(im(Box))28)+1.21788328563091iim(eiatan2(11im(Box)5((re(Box))2+(im(Box))2),11re(Box)5((re(Box))2+(im(Box))2))2(re(Box))4+2(re(Box))2(im(Box))2+(im(Box))44(re(Box))2+(im(Box))28)\sqrt{\sqrt{\frac{\frac{44}{5}}{4 B o x}}} = i \frac{\sqrt[4]{11} \cdot 5^{\frac{3}{4}} \operatorname{im}{\left(\sqrt{\frac{e^{\frac{i \operatorname{atan_{2}}{\left(- \frac{11 \operatorname{im}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)},\frac{11 \operatorname{re}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)} \right)}}{2}}}{\sqrt[4]{\left(\operatorname{re}{\left(B o x\right)}\right)^{4} + 2 \left(\operatorname{re}{\left(B o x\right)}\right)^{2} \left(\operatorname{im}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{4}}}} \sqrt[8]{\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}}\right)}}{5} + \frac{\sqrt[4]{11} \cdot 5^{\frac{3}{4}} \operatorname{re}{\left(\sqrt{\frac{e^{\frac{i \operatorname{atan_{2}}{\left(- \frac{11 \operatorname{im}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)},\frac{11 \operatorname{re}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)} \right)}}{2}}}{\sqrt[4]{\left(\operatorname{re}{\left(B o x\right)}\right)^{4} + 2 \left(\operatorname{re}{\left(B o x\right)}\right)^{2} \left(\operatorname{im}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{4}}}} \sqrt[8]{\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}}\right)}}{5} \approx 1.21788328563091 \operatorname{re}{\left(\sqrt{\frac{e^{\frac{i \operatorname{atan_{2}}{\left(- \frac{11 \operatorname{im}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)},\frac{11 \operatorname{re}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)} \right)}}{2}}}{\sqrt[4]{\left(\operatorname{re}{\left(B o x\right)}\right)^{4} + 2 \left(\operatorname{re}{\left(B o x\right)}\right)^{2} \left(\operatorname{im}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{4}}}} \sqrt[8]{\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}}\right)} + 1.21788328563091 i \operatorname{im}{\left(\sqrt{\frac{e^{\frac{i \operatorname{atan_{2}}{\left(- \frac{11 \operatorname{im}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)},\frac{11 \operatorname{re}{\left(B o x\right)}}{5 \left(\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}\right)} \right)}}{2}}}{\sqrt[4]{\left(\operatorname{re}{\left(B o x\right)}\right)^{4} + 2 \left(\operatorname{re}{\left(B o x\right)}\right)^{2} \left(\operatorname{im}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{4}}}} \sqrt[8]{\left(\operatorname{re}{\left(B o x\right)}\right)^{2} + \left(\operatorname{im}{\left(B o x\right)}\right)^{2}}\right)}