x=y dy/dx + (dy/dx)^2
asked by guest on Nov 17, 2024 at 8:22 am
MathBot Answer:
ddx[y(x)]+ddx[y(x)]2=ddxy(x)∣x=y2+ddxy(x)∣x=y\frac{d}{dx}\left[y\left( x \right)\right] + {\frac{d}{dx}\left[y\left( x \right)\right]}^{2} = \left. \frac{d}{d x} y{\left(x \right)} \right|_{\substack{ x=y }}^{2} + \left. \frac{d}{d x} y{\left(x \right)} \right|_{\substack{ x=y }}dxd[y(x)]+dxd[y(x)]2=dxdy(x)x=y2+dxdy(x)x=y
(ddxy(x))2+ddxy(x)=ddxy(x)∣x=y2+ddxy(x)∣x=y=ddxy(x)∣x=y2+ddxy(x)∣x=y\begin{aligned}\left(\frac{d}{d x} y{\left(x \right)}\right)^{2} + \frac{d}{d x} y{\left(x \right)}&=\left. \frac{d}{d x} y{\left(x \right)} \right|_{\substack{ x=y }}^{2} + \left. \frac{d}{d x} y{\left(x \right)} \right|_{\substack{ x=y }}\\&=\left. \frac{d}{d x} y{\left(x \right)} \right|_{\substack{ x=y }}^{2} + \left. \frac{d}{d x} y{\left(x \right)} \right|_{\substack{ x=y }}\end{aligned}(dxdy(x))2+dxdy(x)=dxdy(x)x=y2+dxdy(x)x=y=dxdy(x)x=y2+dxdy(x)x=y