$\frac{\215}{\99}$/$\frac{\100}{\33}$-$\frac{\140}{\99}$
You asked:
Evaluate the expression: \(\frac{\frac{215}{99}}{\frac{100}{33}} - \frac{140}{99}\)
MathBot Answer:
\[\frac{\frac{215}{99}}{\frac{100}{33}} - \frac{140}{99} = - \frac{1381}{1980} = -0.69\overline{74}\]
\[\begin{aligned}\frac{\frac{215}{99}}{\frac{100}{33}} - \frac{140}{99}& = \frac{215}{99} \cdot \frac{1}{\frac{100}{33}} - \frac{140}{99}\\& = \frac{43}{60} - \frac{140}{99}\\& = - \frac{1381}{1980}\end{aligned}\]