$\frac{\215}{\99}$/$\frac{\100}{\33}$-$\frac{\140}{\99}$

asked by guest
on Dec 27, 2024 at 2:53 am



You asked:

Evaluate the expression: \(\frac{\frac{215}{99}}{\frac{100}{33}} - \frac{140}{99}\)

MathBot Answer:

\[\frac{\frac{215}{99}}{\frac{100}{33}} - \frac{140}{99} = - \frac{1381}{1980} = -0.69\overline{74}\]


\[\begin{aligned}\frac{\frac{215}{99}}{\frac{100}{33}} - \frac{140}{99}& = \frac{215}{99} \cdot \frac{1}{\frac{100}{33}} - \frac{140}{99}\\& = \frac{43}{60} - \frac{140}{99}\\& = - \frac{1381}{1980}\end{aligned}\]