3∛250+4∛192−2∛24−∛128

asked by guest
on Nov 28, 2024 at 7:46 am



You asked:

Evaluate the expression: 32503+41923224312833 \sqrt[3]{250} + 4 \sqrt[3]{192} - 2 \sqrt[3]{24} - \sqrt[3]{128}

MathBot Answer:

32503+4192322431283=1123+123331.166126392532505400298976409421833 \sqrt[3]{250} + 4 \sqrt[3]{192} - 2 \sqrt[3]{24} - \sqrt[3]{128} = 11 \cdot \sqrt[3]{2} + 12 \cdot \sqrt[3]{3} \approx 31.16612639253250540029897640942183


32503+4192322431283=32503+4192322431283=3523+4192322431283=1523+4192322431283=1523+443322431283=1523+163322431283=1523+163322331283=1523+16334331283=1523+1633433423=(1523+1633)433423=(1233+1523)423=1123+1233\begin{aligned}3 \sqrt[3]{250} + 4 \sqrt[3]{192} - 2 \sqrt[3]{24} - \sqrt[3]{128}&=3 \cdot \sqrt[3]{250} + 4 \cdot \sqrt[3]{192} - 2 \cdot \sqrt[3]{24} - \sqrt[3]{128}\\&=3 \cdot 5 \cdot \sqrt[3]{2} + 4 \cdot \sqrt[3]{192} - 2 \cdot \sqrt[3]{24} - \sqrt[3]{128}\\&=15 \cdot \sqrt[3]{2} + 4 \cdot \sqrt[3]{192} - 2 \cdot \sqrt[3]{24} - \sqrt[3]{128}\\&=15 \cdot \sqrt[3]{2} + 4 \cdot 4 \cdot \sqrt[3]{3} - 2 \cdot \sqrt[3]{24} - \sqrt[3]{128}\\&=15 \cdot \sqrt[3]{2} + 16 \cdot \sqrt[3]{3} - 2 \cdot \sqrt[3]{24} - \sqrt[3]{128}\\&=15 \cdot \sqrt[3]{2} + 16 \cdot \sqrt[3]{3} - 2 \cdot 2 \cdot \sqrt[3]{3} - \sqrt[3]{128}\\&=15 \cdot \sqrt[3]{2} + 16 \cdot \sqrt[3]{3} - 4 \cdot \sqrt[3]{3} - \sqrt[3]{128}\\&=15 \cdot \sqrt[3]{2} + 16 \cdot \sqrt[3]{3} - 4 \cdot \sqrt[3]{3} - 4 \cdot \sqrt[3]{2}\\&=\left(15 \cdot \sqrt[3]{2} + 16 \cdot \sqrt[3]{3}\right) - 4 \cdot \sqrt[3]{3} - 4 \cdot \sqrt[3]{2}\\&=\left(12 \cdot \sqrt[3]{3} + 15 \cdot \sqrt[3]{2}\right) - 4 \cdot \sqrt[3]{2}\\&=11 \cdot \sqrt[3]{2} + 12 \cdot \sqrt[3]{3}\end{aligned}