cosh(47.98L)=−0.0030650

asked by guest
on Jan 15, 2025 at 9:57 pm



You asked:

Solve the equation \(\cosh\left( 47.98 L \right) = -0.0030650\) for the variable \(L\).

MathBot Answer:


The complex solutions are: \[\begin{aligned}L &= \left\{\frac{50 i \left(- \pi + 2 \pi n + \arctan{\left(\frac{\sqrt{39999624231}}{613} \right)}\right)}{2399}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{0.020842018 i \left(6.2831853 n - 1.5738613\right)\; \middle|\; n \in \mathbb{Z}\right\}\\L &= \left\{\frac{50 i \left(\pi - \arctan{\left(\frac{\sqrt{39999624231}}{613} \right)} + 2 \pi n\right)}{2399}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{0.020842018 i \left(6.2831853 n + 1.5738613\right)\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}\]


\(i\) is the imaginary unit, defined as \(i^2 = -1\).