√(7−5)2+(1−2)−(−2)²

asked by guest
on Jan 11, 2025 at 7:54 am



You asked:

Evaluate the expression: 752+12(2)2\sqrt{7 - 5} \cdot 2 + 1 - 2 - {\left( -2 \right)}^{2}

MathBot Answer:

752+12(2)2=5+222.1715728752538099023966225515806\sqrt{7 - 5} \cdot 2 + 1 - 2 - {\left( -2 \right)}^{2} = -5 + 2 \sqrt{2} \approx -2.1715728752538099023966225515806


752+12(2)2=752+12(2)2=22+12(2)2=22+12(2)2=22+124=(1+22)24=(1+22)4=5+22\begin{aligned}\sqrt{7 - 5} \cdot 2 + 1 - 2 - {\left( -2 \right)}^{2}&=\sqrt{7 - 5} \cdot 2 + 1 - 2 - \left(-2\right)^{2}\\&=\sqrt{2} \cdot 2 + 1 - 2 - \left(-2\right)^{2}\\&=2 \cdot \sqrt{2} + 1 - 2 - \left(-2\right)^{2}\\&=2 \cdot \sqrt{2} + 1 - 2 - 4\\&=\left(1 + 2 \cdot \sqrt{2}\right) - 2 - 4\\&=\left(-1 + 2 \cdot \sqrt{2}\right) - 4\\&=-5 + 2 \cdot \sqrt{2}\end{aligned}