√(7−5)2+(1−2)−(−2)²

asked by guest
on Jan 11, 2025 at 7:54 am



You asked:

Evaluate the expression: \(\sqrt{7 - 5} \cdot 2 + 1 - 2 - {\left( -2 \right)}^{2}\)

MathBot Answer:

\[\sqrt{7 - 5} \cdot 2 + 1 - 2 - {\left( -2 \right)}^{2} = -5 + 2 \sqrt{2} \approx -2.1715728752538099023966225515806\]


\[\begin{aligned}\sqrt{7 - 5} \cdot 2 + 1 - 2 - {\left( -2 \right)}^{2}& = \sqrt{7 - 5} \cdot 2 + 1 - 2 - \left(-2\right)^{2}\\& = \sqrt{2} \cdot 2 + 1 - 2 - \left(-2\right)^{2}\\& = 2 \cdot \sqrt{2} + 1 - 2 - \left(-2\right)^{2}\\& = 2 \cdot \sqrt{2} + 1 - 2 - 4\\& = \left(1 + 2 \cdot \sqrt{2}\right) - 2 - 4\\& = \left(-1 + 2 \cdot \sqrt{2}\right) - 4\\& = -5 + 2 \cdot \sqrt{2}\end{aligned}\]