27.331-10.898

asked by guest
on Apr 01, 2025 at 10:49 am



You asked:

Evaluate the expression: 27.33110.89827.331 - 10.898

MathBot Answer:

27.33110.898=16.433=164331000 27.331 - 10.898=16.433=\frac{16433}{1000}


276.312312111010.89816.433 \begin{aligned} \mathtt{2}\overset{\mathtt{{\scriptscriptstyle 6}}}{\cancel{\mathtt{7}}}&\mathtt{.}\overset{{\scriptscriptstyle \mathtt{12}}}{\cancel{\mathtt{3}}}\overset{{\scriptscriptstyle \mathtt{12}}}{\cancel{\mathtt{3}}}\overset{{\scriptscriptstyle \mathtt{11}}}{\cancel{\mathtt{1}}}\\ \mathtt{-\phantom{0}}\mathtt{1}\mathtt{0}&\mathtt{.}\mathtt{8}\mathtt{9}\mathtt{8}\\ \hline \mathtt{1}\mathtt{6}&\mathtt{.}\mathtt{4}\mathtt{3}\mathtt{3} \end{aligned}

Borrow 10210^{-2}, resulting in 22 in the 10210^{-2} place, and 1111 in the 10310^{-3} place.

33 is the digit in the 10310^{-3} place. 11×1038×103=3×10311 \times 10^{-3} - 8 \times 10^{-3} = 3 \times 10^{-3}.

Borrow 10110^{-1}, resulting in 22 in the 10110^{-1} place, and 1212 in the 10210^{-2} place.

33 is the digit in the 10210^{-2} place. 12×1029×102=3×10212 \times 10^{-2} - 9 \times 10^{-2} = 3 \times 10^{-2}.

Borrow 10010^{0}, resulting in 66 in the 10010^{0} place, and 1212 in the 10110^{-1} place.

44 is the digit in the 10110^{-1} place. 12×1018×101=4×10112 \times 10^{-1} - 8 \times 10^{-1} = 4 \times 10^{-1}.

66 is the digit in the 10010^{0} place. 6×1000×100=6×1006 \times 10^{0} - 0 \times 10^{0} = 6 \times 10^{0}.

11 is the digit in the 10110^{1} place. 2×1011×101=1×1012 \times 10^{1} - 1 \times 10^{1} = 1 \times 10^{1}.