2+{(5/4)-[(3/8)*(2+(1/3))/(4/3)]}*(2/4)

asked by guest
on Jan 10, 2025 at 8:01 am



You asked:

Evaluate the expression: \(2 + \left(\frac{5}{4} - \frac{\frac{3}{8} \left(2 + \frac{1}{3}\right)}{\frac{4}{3}}\right) \cdot \frac{2}{4}\)

MathBot Answer:

\[2 + \left(\frac{5}{4} - \frac{\frac{3}{8} \left(2 + \frac{1}{3}\right)}{\frac{4}{3}}\right) \cdot \frac{2}{4} = \frac{147}{64} = 2.296875\]


\[\begin{aligned}2 + \left(\frac{5}{4} - \frac{\frac{3}{8} \left(2 + \frac{1}{3}\right)}{\frac{4}{3}}\right) \cdot \frac{2}{4}& = 2 + \left(\frac{5}{4} - \frac{3}{8} \cdot \left(2 + \frac{1}{3}\right) \cdot \frac{1}{\frac{4}{3}}\right) \cdot \frac{2}{4}\\& = 2 + \left(\frac{5}{4} - \frac{3}{8} \cdot \frac{7}{3} \cdot \frac{1}{\frac{4}{3}}\right) \cdot \frac{2}{4}\\& = 2 + \left(\frac{5}{4} - \frac{3}{8} \cdot \frac{7}{4}\right) \cdot \frac{2}{4}\\& = 2 + \left(\frac{5}{4} - \frac{21}{32}\right) \cdot \frac{2}{4}\\& = 2 + \frac{19}{32} \cdot \frac{2}{4}\\& = 2 + \frac{19}{64}\\& = \frac{147}{64}\end{aligned}\]