a= arctan 3/4 + arcsin 4/5
b= arcsin 2/5 + arccos 2/5
a/b=?
asked by guest on Jan 12, 2025 at 11:30 pm
MathBot Answer:
ab=arctan(3)4+arcsin(4)5arcsin(2)5+arccos(2)5\frac{a}{b} = \frac{\frac{\arctan{\left(3 \right)}}{4} + \frac{\arcsin{\left(4 \right)}}{5}}{\frac{\arcsin{\left(2 \right)}}{5} + \frac{\arccos{\left(2 \right)}}{5}}ba=5arcsin(2)+5arccos(2)4arctan(3)+5arcsin(4)
ab=(atan(3)4+asin(4)5)(asin(2)5+acos(2)5)=(asin(4)5+atan(3)4)(asin(2)5+acos(2)5)=(asin(4)5+atan(3)4)(acos(2)5+asin(2)5)=(atan(3)4+asin(4)5)(acos(2)5+asin(2)5)=(4asin(4)+5atan(3))(4acos(2)+4asin(2))=arctan(3)4+arcsin(4)5arcsin(2)5+arccos(2)5\begin{aligned}\frac{a}{b}&=\frac{\left(\frac{\operatorname{atan}{\left(3 \right)}}{4} + \frac{\operatorname{asin}{\left(4 \right)}}{5}\right)}{\left(\frac{\operatorname{asin}{\left(2 \right)}}{5} + \frac{\operatorname{acos}{\left(2 \right)}}{5}\right)}\\&=\frac{\left(\frac{\operatorname{asin}{\left(4 \right)}}{5} + \frac{\operatorname{atan}{\left(3 \right)}}{4}\right)}{\left(\frac{\operatorname{asin}{\left(2 \right)}}{5} + \frac{\operatorname{acos}{\left(2 \right)}}{5}\right)}\\&=\frac{\left(\frac{\operatorname{asin}{\left(4 \right)}}{5} + \frac{\operatorname{atan}{\left(3 \right)}}{4}\right)}{\left(\frac{\operatorname{acos}{\left(2 \right)}}{5} + \frac{\operatorname{asin}{\left(2 \right)}}{5}\right)}\\&=\frac{\left(\frac{\operatorname{atan}{\left(3 \right)}}{4} + \frac{\operatorname{asin}{\left(4 \right)}}{5}\right)}{\left(\frac{\operatorname{acos}{\left(2 \right)}}{5} + \frac{\operatorname{asin}{\left(2 \right)}}{5}\right)}\\&=\frac{\left(4 \operatorname{asin}{\left(4 \right)} + 5 \operatorname{atan}{\left(3 \right)}\right)}{\left(4 \operatorname{acos}{\left(2 \right)} + 4 \operatorname{asin}{\left(2 \right)}\right)}\\&=\frac{\frac{\arctan{\left(3 \right)}}{4} + \frac{\arcsin{\left(4 \right)}}{5}}{\frac{\arcsin{\left(2 \right)}}{5} + \frac{\arccos{\left(2 \right)}}{5}}\end{aligned}ba=(5asin(2)+5acos(2))(4atan(3)+5asin(4))=(5asin(2)+5acos(2))(5asin(4)+4atan(3))=(5acos(2)+5asin(2))(5asin(4)+4atan(3))=(5acos(2)+5asin(2))(4atan(3)+5asin(4))=(4acos(2)+4asin(2))(4asin(4)+5atan(3))=5arcsin(2)+5arccos(2)4arctan(3)+5arcsin(4)