(1+2/i)(3+4/i)(5+i)-1
You asked:
Evaluate the expression: \(\left(1 + \frac{2}{i}\right) \cdot \left(3 + \frac{4}{i}\right) \cdot \left(5 + i\right) - 1\)
MathBot Answer:
Evaluated
\(\displaystyle \left(1 + \frac{2}{i}\right) \cdot \left(3 + \frac{4}{i}\right) \cdot \left(5 + i\right) - 1 = -1 + \left(1 - 2 i\right) \left(3 - 4 i\right) \left(5 + i\right) \)
Expanded
\[\left(1 + \frac{2}{i}\right) \cdot \left(3 + \frac{4}{i}\right) \cdot \left(5 + i\right) - 1 = -16 - 55 i\]
Factored
\[\left(1 + \frac{2}{i}\right) \cdot \left(3 + \frac{4}{i}\right) \cdot \left(5 + i\right) - 1 = -16 - 55 i\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).