2/3+2/3/4-1/1/2 times 4/1/6+1/2/3=

asked by guest
on Jan 18, 2025 at 4:23 am



You asked:

Evaluate the expression: \(\frac{2}{3} + \frac{\frac{2}{3}}{4} - \frac{\frac{1}{1}}{2} \cdot \frac{\frac{4}{1}}{6} + \frac{\frac{1}{2}}{3}\)

MathBot Answer:

\[\frac{2}{3} + \frac{\frac{2}{3}}{4} - \frac{\frac{1}{1}}{2} \cdot \frac{\frac{4}{1}}{6} + \frac{\frac{1}{2}}{3} = \frac{2}{3} = 0.\overline{6}\]


\[\begin{aligned}\frac{2}{3} + \frac{\frac{2}{3}}{4} - \frac{\frac{1}{1}}{2} \cdot \frac{\frac{4}{1}}{6} + \frac{\frac{1}{2}}{3}& = \frac{2}{3} + \frac{2}{3} \cdot \frac{1}{4} - \frac{1}{2} \cdot \frac{4}{6} + \frac{1}{2} \cdot \frac{1}{3}\\& = \frac{2}{3} + \frac{1}{6} - \frac{1}{2} \cdot \frac{4}{6} + \frac{1}{2} \cdot \frac{1}{3}\\& = \frac{2}{3} + \frac{1}{6} - \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3}\\& = \frac{2}{3} + \frac{1}{6} - \frac{1}{3} + \frac{1}{6}\\& = \frac{5}{6} - \frac{1}{3} + \frac{1}{6}\\& = \frac{1}{2} + \frac{1}{6}\\& = \frac{2}{3}\end{aligned}\]