4/√10xx-4√10xx-x-45
You asked:
Evaluate the expression: \(\frac{4}{\sqrt{10} \cdot x x} - 4 \cdot \sqrt{10} \cdot x x - x - 45\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{4}{\sqrt{10} \cdot x x} - 4 \cdot \sqrt{10} \cdot x x - x - 45 = - 4 \sqrt{10} x^{2} - x - 45 + \frac{2 \sqrt{10}}{5 x^{2}} \)
Factored
\[\frac{4}{\sqrt{10} \cdot x x} - 4 \cdot \sqrt{10} \cdot x x - x - 45 = - \frac{20 \sqrt{10} x^{4} + 5 x^{3} + 225 x^{2} - 2 \sqrt{10}}{5 x^{2}}\]