4/√10xx-4√10xx-x-45

asked by guest
on Nov 23, 2024 at 4:28 pm



You asked:

Evaluate the expression: 410xx410xxx45\frac{4}{\sqrt{10} \cdot x \cdot x} - 4 \sqrt{10} \cdot x \cdot x - x - 45

MathBot Answer:

Evaluated



410xx410xxx45=410x2x45+2105x2\displaystyle \frac{4}{\sqrt{10} \cdot x \cdot x} - 4 \sqrt{10} \cdot x \cdot x - x - 45 = - 4 \sqrt{10} x^{2} - x - 45 + \frac{2 \sqrt{10}}{5 x^{2}}


Factored

410xx410xxx45=2010x4+5x3+225x22105x2\frac{4}{\sqrt{10} \cdot x \cdot x} - 4 \sqrt{10} \cdot x \cdot x - x - 45 = - \frac{20 \sqrt{10} x^{4} + 5 x^{3} + 225 x^{2} - 2 \sqrt{10}}{5 x^{2}}