What is the value of 283 + 293 + 303 ……………+ 483?

asked by guest
on Apr 13, 2025 at 11:40 am



You asked:

Find the sum of the sequence: 283283, 293293, 303303, \ldots, 483483

MathBot Answer:

The sum of the sequence is 8043\displaystyle 8043


This is an arithmetic sequence.

The nth term in this sequence is given by the formula:

Explicit Formula: an=10n+273a_n=10 n + 273

Recursive Formula: an=an1+10,where a1=283a_n=a_{n-1} + 10, \text{where } a_1=283


Summation Formula:

Option 1:

Sn=n2(2a1+(n1)d)S_n=\frac{n}{2} (2 a_1 + (n - 1) d) where a1a_1 is the 1st term, dd is the common difference, and nn is the is the term number.

Option 2:

Sn=n(a1+an2)S_n=n \left(\frac{a_1 + a_n}{2}\right) where a1a_1 is the 1st term, ana_n is the nth term, and nn is the is the term number.

Option 3:

Sn=i=1nai=i=1n(10i+273)=i=1n273+i=1n10i   by the identityn=km(f(n)+g(n))=n=kmf(n)+n=kmg(n)=i=1n10i+273n   by the identityn=1mC=mC=10i=1ni+273n   by the identityn=kmCf(n)=Cn=kmf(n)=273n+10n(1+n)2   by the identityn=1mn=m(m+1)2=n(5n+278)\begin{aligned} S_n&=\sum_{i=1}^{n} a_{i} \\ &=\sum_{i=1}^{n} \left(10 i + 273\right) \\ &= \sum_{i=1}^{n} 273 + \sum_{i=1}^{n} 10 i \ \ \ \small{\color{grey}\text{by the identity} \sum_{n=k}^{m} \left(f{\left(n \right)} + g{\left(n \right)}\right) = \sum_{n=k}^{m} f{\left(n \right)} + \sum_{n=k}^{m} g{\left(n \right)}}\\&= \sum_{i=1}^{n} 10 i + 273 n \ \ \ \small{\color{grey}\text{by the identity} \sum_{n=1}^{m} C = mC}\\&= 10 \sum_{i=1}^{n} i + 273 n \ \ \ \small{\color{grey}\text{by the identity} \sum_{n=k}^{m} C f{\left(n \right)} = C \sum_{n=k}^{m} f{\left(n \right)}}\\&= 273 n + \frac{10 n \left(1 + n\right)}{2} \ \ \ \small{\color{grey}\text{by the identity} \sum_{n=1}^{m} n = \frac{m(m+1)}{2}}\\&=n \left(5 n + 278\right) \end{aligned}where nn is the is the term number.


Use the explicit formula to find the index of the final term in the sequence.483=10n+273n=21\begin{aligned}483 &= 10 n + 273 \\ n &= 21\end{aligned}Then use the summation formula to solve.Sn=n(5n+278)S21=21(278+521)S21=8043\begin{aligned}S_n &= n \left(5 n + 278\right) \\S_{21} &= 21 \cdot \left(278 + 5 \cdot 21\right)\\S_{21} &= 8043\end{aligned}