(a+b+c)*(b+c-a)*(a-b+c)*(a+b-c)
You asked:
Evaluate the expression: \(\left(a + b + c\right) \left(b + c - a\right) \left(a - b + c\right) \left(a + b - c\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(a + b + c\right) \left(b + c - a\right) \left(a - b + c\right) \left(a + b - c\right) = \left(- a + b + c\right) \left(a - b + c\right) \left(a + b - c\right) \left(a + b + c\right) \)
Expanded
\[\left(a + b + c\right) \left(b + c - a\right) \left(a - b + c\right) \left(a + b - c\right) = - a^{4} + 2 a^{2} b^{2} + 2 a^{2} c^{2} - b^{4} + 2 b^{2} c^{2} - c^{4}\]
Factored
\[\left(a + b + c\right) \left(b + c - a\right) \left(a - b + c\right) \left(a + b - c\right) = - \left(a - b - c\right) \left(a - b + c\right) \left(a + b - c\right) \left(a + b + c\right)\]