0.75+0.5+0.75+1+0.75

asked by guest
on Nov 12, 2024 at 12:17 am



You asked:

Evaluate the expression: \(0.75 + 0.5 + 0.75 + 1 + 0.75\)

MathBot Answer:

\[ 0.75 + 0.5 + 0.75 + 1 + 0.75 = \frac{15}{4} = 3.75 \]


The sum can be computed by rewriting each term over a common denominator, where the least common denominator of \(\frac{75}{100}\), \(\frac{5}{10}\), \(\frac{75}{100}\), \(\frac{1}{1}\), and \(\frac{75}{100}\) is \(100\). \[ \begin{aligned} 0.75 + 0.5 + 0.75 + 1 + 0.75 &= \frac{75 \cdot 1}{100 \cdot 1} + \frac{5 \cdot 10}{10 \cdot 10} + \frac{75 \cdot 1}{100 \cdot 1} + \frac{1 \cdot 100}{1 \cdot 100} + \frac{75 \cdot 1}{100 \cdot 1} \\ &= \frac{75 + 50 + 75 + 100 + 75}{100} \\ &= \frac{375}{100} \\&= \frac{15}{4} \end{aligned} \]