(1+0.3)((1.5^2/r^2)-0.05)+((0.70)((3*1.5^4/r^4)-0.05)cos(2*90))=0

asked by guest
on Apr 06, 2025 at 9:37 pm



You asked:

Solve the equation (1+0.3)(1.52r20.05)+0.70(31.54r40.05)cos(290)=0\left(1 + 0.3\right) \left(\frac{{1.5}^{2}}{{r}^{2}} - 0.05\right) + 0.70 \left(\frac{3 \cdot {1.5}^{4}}{{r}^{4}} - 0.05\right) \cdot \cos\left( 2 \cdot 90 \right) = 0 for the variable rr.

MathBot Answer:

The 4 solutions to the equation are: r=313025845+147cos2(180)+273cos(180)213+7cos(180)1.5005074r=313025845+147cos2(180)+273cos(180)213+7cos(180)1.5005074r=3130+25845+147cos2(180)+273cos(180)213+7cos(180)8.0090211r=3130+25845+147cos2(180)+273cos(180)213+7cos(180)8.0090211\begin{aligned}r &= - \frac{3 \sqrt{130 - 2 \sqrt{5} \sqrt{845 + 147 \cos^{2}{\left(180 \right)} + 273 \cos{\left(180 \right)}}}}{2 \sqrt{13 + 7 \cos{\left(180 \right)}}} \approx -1.5005074\\r &= \frac{3 \sqrt{130 - 2 \sqrt{5} \sqrt{845 + 147 \cos^{2}{\left(180 \right)} + 273 \cos{\left(180 \right)}}}}{2 \sqrt{13 + 7 \cos{\left(180 \right)}}} \approx 1.5005074\\r &= - \frac{3 \sqrt{130 + 2 \sqrt{5} \sqrt{845 + 147 \cos^{2}{\left(180 \right)} + 273 \cos{\left(180 \right)}}}}{2 \sqrt{13 + 7 \cos{\left(180 \right)}}} \approx -8.0090211\\r &= \frac{3 \sqrt{130 + 2 \sqrt{5} \sqrt{845 + 147 \cos^{2}{\left(180 \right)} + 273 \cos{\left(180 \right)}}}}{2 \sqrt{13 + 7 \cos{\left(180 \right)}}} \approx 8.0090211\end{aligned}