128+36/71,-206^x
MathBot Answer:
The sum of \(128 + \frac{36}{71}\) and \(-{206}^{x}\) is:
\[\begin{aligned}&=\left(128 + \frac{36}{71}\right) + \left(-{206}^{x}\right) \\\\ &= - 206^{x} + \frac{36}{71} + 128 \\\\ &= \frac{9124}{71} - 206^{x} \\\\\end{aligned}\]
The difference of \(128 + \frac{36}{71}\) and \(-{206}^{x}\) is:
\[\begin{aligned}&=\left(128 + \frac{36}{71}\right) - \left(-{206}^{x}\right) \\\\ &= 206^{x} + \frac{36}{71} + 128 \\\\ &= 206^{x} + \frac{9124}{71} \\\\\end{aligned}\]
The product of \(128 + \frac{36}{71}\) and \(-{206}^{x}\) is:
\[\begin{aligned}&=\left(128 + \frac{36}{71}\right) \cdot \left(-{206}^{x}\right) \\\\ &= - 206^{x} \left(\frac{36}{71} + 128\right) \\\\ &= - \frac{9124 \cdot 206^{x}}{71} \\\\\end{aligned}\]
The quotient of \(128 + \frac{36}{71}\) and \(-{206}^{x}\) is:
\[\begin{aligned}&= \frac{\left(128 + \frac{36}{71}\right)}{\left(-{206}^{x}\right)} \\\\ &= - 206^{- x} \left(\frac{36}{71} + 128\right) \\\\ &= - \frac{9124 \cdot 206^{- x}}{71} \\\\\end{aligned}\]