{[(−4)2 −9 ] ÷ (− 3)} × {(-6) + [ 4 − (−2)2]}

asked by guest
on Nov 17, 2024 at 5:26 pm



You asked:

Evaluate the expression: \(\frac{-4 \cdot 2 - 9}{-3} \cdot \left(-6 + 4 - -2 \cdot 2\right)\)

MathBot Answer:

\[\frac{-4 \cdot 2 - 9}{-3} \cdot \left(-6 + 4 - -2 \cdot 2\right) = \frac{34}{3} = 11.\overline{3}\]


\[\begin{aligned}\frac{-4 \cdot 2 - 9}{-3} \cdot \left(-6 + 4 - -2 \cdot 2\right)& = \left(-4 \cdot 2 - 9\right) \cdot \frac{1}{-3} \cdot \left(-6 + 4 - -2 \cdot 2\right)\\& = \left(-8 - 9\right) \cdot \frac{1}{-3} \cdot \left(-6 + 4 - -2 \cdot 2\right)\\& = \frac{-17}{-3} \cdot \left(-6 + 4 - -2 \cdot 2\right)\\& = \frac{17}{3} \cdot \left(-6 + 4 - -2 \cdot 2\right)\\& = \frac{17}{3} \cdot \left(-6 + 4 - -4\right)\\& = \frac{17}{3} \cdot \left(-6 + 4 + 4\right)\\& = \frac{17}{3} \cdot \left(-2 + 4\right)\\& = \frac{17}{3} \cdot 2\\& = \frac{34}{3}\end{aligned}\]