.2222

11790624.1115

2441009

202952.903

.880627620999892

.31884125091364

4277585633724

.2441009

202952.903

.60253636275234

.5080946

.27793306

.31684882

.1999398

.407104048741509

13143188.1667

9238917.2222

13003356.4922

11790624.1115

.3168488227793306508094660253636275234

.2222

11790624.1115

2441009

202952.903

.880627620999892

.31884125091364

4277585633724

.2441009

202952.903

.60253636275234

.5080946

.27793306

.31684882

.1999398

.407104048741509

13143188.1667

9238917.2222

13003356.4922

11790624.1115

.3168488227793306508094660253636275234

asked by guest
on Dec 27, 2024 at 12:31 am



MathBot Answer:

Original numbers in ascending order: \(.1999398\), \(.1999398\), \(.2222\), \(.2222\), \(.2441009\), \(.2441009\), \(.27793306\), \(.27793306\), \(.31684882\), \(.31684882\), \(.3168488227793306508094660253636275234\), \(.3168488227793306508094660253636275234\), \(.31884125091364\), \(.31884125091364\), \(.407104048741509\), \(.407104048741509\), \(.5080946\), \(.5080946\), \(.60253636275234\), \(.60253636275234\), \(.880627620999892\), \(.880627620999892\), \(202952.903\), \(202952.903\), \(202952.903\), \(202952.903\), \(2441009\), \(2441009\), \(9238917.2222\), \(9238917.2222\), \(11790624.1115\), \(11790624.1115\), \(11790624.1115\), \(11790624.1115\), \(13003356.4922\), \(13003356.4922\), \(13143188.1667\), \(13143188.1667\), \(4277585633724\), \(4277585633724\)
Sum: \( \frac{21388237236766025876430933558254047330126818137617}{2500000000000000000000000000000000000} \approx 8555294894706.41 \)
Mean: \( \frac{21388237236766025876430933558254047330126818137617}{100000000000000000000000000000000000000} \approx 213882372367.66 \)
Sample standard deviation: \( \frac{\sqrt{3389650966720366116460231045670302982780104901966279986529258183023832332926362974179492454636750685490}}{1950000000000000000000000000000000000000} \approx 944154090812.507 \)
Median: \( \frac{185395497969029}{250000000000000} \approx 0.7416 \)
Mode: \( \frac{23581248223}{2000} \approx 11790624.1115 \)