6(x+2),3x+6

asked by guest
on Nov 13, 2024 at 9:17 am



MathBot Answer:

The sum of \(6 \cdot \left(x + 2\right)\) and \(3 x + 6\) is:

\[\begin{aligned}&=\left(6 \cdot \left(x + 2\right)\right) + \left(3 x + 6\right) \\\\ &= 3 x + 6 \left(x + 2\right) + 6 \\\\ &= 9 x + 18 \\\\\end{aligned}\]


The difference of \(6 \cdot \left(x + 2\right)\) and \(3 x + 6\) is:

\[\begin{aligned}&=\left(6 \cdot \left(x + 2\right)\right) - \left(3 x + 6\right) \\\\ &= - 3 x + 6 \left(x + 2\right) - 6 \\\\ &= 3 x + 6 \\\\\end{aligned}\]


The product of \(6 \cdot \left(x + 2\right)\) and \(3 x + 6\) is:

\[\begin{aligned}&=\left(6 \cdot \left(x + 2\right)\right) \cdot \left(3 x + 6\right) \\\\ &= 6 \cdot \left(3 x + 6\right) \left(x + 2\right) \\\\ &= 18 x^{2} + 72 x + 72 \\\\\end{aligned}\]


The quotient of \(6 \cdot \left(x + 2\right)\) and \(3 x + 6\) is:

\[\begin{aligned}&= \frac{\left(6 \cdot \left(x + 2\right)\right)}{\left(3 x + 6\right)} \\\\ &= \frac{6 \left(x + 2\right)}{3 x + 6} \\\\ &= 2 \\\\\end{aligned}\]