-11x+2y=36
20x-47y=-90
solve for x and y
You asked:
MathBot Answer:
The system of linear equations has exactly one solution.
The substitutions are \( x = - \frac{168}{53} \), \( y = \frac{30}{53} \).
\[x = - \frac{168}{53}\]
\[y = \frac{30}{53}\]
Solve \(- 11 x + 2 y = 36\) for \(x\). \[x = \frac{2 y}{11} - \frac{36}{11}\]
Substitute \(\frac{2 y}{11} - \frac{36}{11}\) for \(x\) in \(20 x - 47 y = -90\) and simplify. $$\begin{aligned}20 x - 47 y &= -90 \\ 20 \left(\frac{2 y}{11} - \frac{36}{11}\right) - 47 y &= -90 \\ y &= \frac{30}{53} \end{aligned}$$
Use substitution of the numerical value of \(y\) to get the values of \(x\). $$\begin{aligned}x &= \frac{2 y}{11} - \frac{36}{11} \\ x &= \frac{2 \cdot \frac{30}{53}}{11} - \frac{36}{11} \\ x &= - \frac{168}{53}\end{aligned}$$