(100-x^2)^(1/2) / (100-x^2)^(-1/2)
You asked:
Evaluate the expression: \(\frac{{\left( 100 - {x}^{2} \right)}^{\frac{1}{2}}}{{\left( 100 - {x}^{2} \right)}^{\frac{-1}{2}}}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{{\left( 100 - {x}^{2} \right)}^{\frac{1}{2}}}{{\left( 100 - {x}^{2} \right)}^{\frac{-1}{2}}} = 100 - x^{2} \)
Expanded
\[\frac{{\left( 100 - {x}^{2} \right)}^{\frac{1}{2}}}{{\left( 100 - {x}^{2} \right)}^{\frac{-1}{2}}} = 100 - x^{2}\]
Factored
\[\frac{{\left( 100 - {x}^{2} \right)}^{\frac{1}{2}}}{{\left( 100 - {x}^{2} \right)}^{\frac{-1}{2}}} = \sqrt{- \left(x - 10\right) \left(x + 10\right)} \left(- \left(x - 10\right) \left(x + 10\right)\right)^{\frac{1}{2}}\]