$\sqrt{\4*tan(72)*tan(72)+4(1/cos(72)-1)*(1/cos(72)-1)}$

asked by guest
on Dec 27, 2024 at 5:06 am



You asked:

Evaluate the expression: 4tan(72)tan(72)+4(1cos(72)1)(1cos(72)1)\sqrt{4 \tan\left( 72 \right) \tan\left( 72 \right) + 4 \left(\frac{1}{\cos\left( 72 \right)} - 1\right) \left(\frac{1}{\cos\left( 72 \right)} - 1\right)}

MathBot Answer:

4tan(72)tan(72)+4(1cos(72)1)(1cos(72)1)=4tan2(72)+4(1cos(72)1)24.10143499716244341931898785909903\sqrt{4 \tan\left( 72 \right) \tan\left( 72 \right) + 4 \left(\frac{1}{\cos\left( 72 \right)} - 1\right) \left(\frac{1}{\cos\left( 72 \right)} - 1\right)} = \sqrt{4 \tan^{2}{\left(72 \right)} + 4 \left(\frac{1}{\cos{\left(72 \right)}} - 1\right)^{2}} \approx 4.10143499716244341931898785909903


4tan(72)tan(72)+4(1cos(72)1)(1cos(72)1)=4tan(72)tan(72)+4(1cos(72)1)(1cos(72)1)=4tan2(72)+4(1cos(72)1)(1cos(72)1)=4tan2(72)+4(1+1cos(72))(1cos(72)1)=4tan2(72)+4(1+1cos(72))(1+1cos(72))=4tan2(72)+(4+41cos(72))(1+1cos(72))=4tan2(72)+(1+1cos(72))(4+41cos(72))\begin{aligned}\sqrt{4 \tan\left( 72 \right) \tan\left( 72 \right) + 4 \left(\frac{1}{\cos\left( 72 \right)} - 1\right) \left(\frac{1}{\cos\left( 72 \right)} - 1\right)}&=\sqrt{4 \cdot \tan{\left(72 \right)} \cdot \tan{\left(72 \right)} + 4 \cdot \left(\frac{1}{\cos{\left(72 \right)}} - 1\right) \cdot \left(\frac{1}{\cos{\left(72 \right)}} - 1\right)}\\&=\sqrt{4 \cdot \tan^{2}{\left(72 \right)} + 4 \cdot \left(\frac{1}{\cos{\left(72 \right)}} - 1\right) \cdot \left(\frac{1}{\cos{\left(72 \right)}} - 1\right)}\\&=\sqrt{4 \cdot \tan^{2}{\left(72 \right)} + 4 \cdot \left(-1 + \frac{1}{\cos{\left(72 \right)}}\right) \cdot \left(\frac{1}{\cos{\left(72 \right)}} - 1\right)}\\&=\sqrt{4 \cdot \tan^{2}{\left(72 \right)} + 4 \cdot \left(-1 + \frac{1}{\cos{\left(72 \right)}}\right) \cdot \left(-1 + \frac{1}{\cos{\left(72 \right)}}\right)}\\&=\sqrt{4 \cdot \tan^{2}{\left(72 \right)} + \left(-4 + 4 \cdot \frac{1}{\cos{\left(72 \right)}}\right) \cdot \left(-1 + \frac{1}{\cos{\left(72 \right)}}\right)}\\&=\sqrt{4 \cdot \tan^{2}{\left(72 \right)} + \left(-1 + \frac{1}{\cos{\left(72 \right)}}\right) \cdot \left(-4 + 4 \cdot \frac{1}{\cos{\left(72 \right)}}\right)}\end{aligned}