(x^10) = 0.5

asked by guest
on Mar 30, 2025 at 9:41 am



You asked:

Solve the equation x10=0.5{x}^{10} = 0.5 for the variable xx.

MathBot Answer:

The solutions are given by the formula: x=2910cos(πk5)2+2910sin(πk5)2ix = \frac{2^{\frac{9}{10}} \cos{\left(\frac{\pi k}{5} \right)}}{2} + \frac{2^{\frac{9}{10}} \sin{\left(\frac{\pi k}{5} \right)}}{2} i where kk is an integer in 0k<100 \le k < 10.

There are 22 real solutions.

There are 88 solutions with nonzero imaginary part.


Real solutions: x=291020.93303299x=291020.93303299\begin{aligned}x &= \frac{2^{\frac{9}{10}}}{2} \\&\approx 0.93303299\\x &= - \frac{2^{\frac{9}{10}}}{2} \\&\approx -0.93303299\end{aligned}


Solutions with nonzero imaginary part: x=2910(14+54)2+2910i585820.75483955+0.54842303ix=2910(14+54)2+2910i58+5820.28832305+0.88736711ix=2910(1454)2+2910i58+5820.28832305+0.88736711ix=2910(5414)2+2910i585820.75483955+0.54842303ix=2910(5414)22910i585820.754839550.54842303ix=2910(1454)22910i58+5820.288323050.88736711ix=2910(14+54)22910i58+5820.288323050.88736711ix=2910(14+54)22910i585820.754839550.54842303i\begin{aligned}x &= \frac{2^{\frac{9}{10}} \cdot \left(\frac{1}{4} + \frac{\sqrt{5}}{4}\right)}{2} + \frac{2^{\frac{9}{10}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2} \\&\approx 0.75483955 + 0.54842303 i\\x &= \frac{2^{\frac{9}{10}} \left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right)}{2} + \frac{2^{\frac{9}{10}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2} \\&\approx 0.28832305 + 0.88736711 i\\x &= \frac{2^{\frac{9}{10}} \cdot \left(\frac{1}{4} - \frac{\sqrt{5}}{4}\right)}{2} + \frac{2^{\frac{9}{10}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2} \\&\approx -0.28832305 + 0.88736711 i\\x &= \frac{2^{\frac{9}{10}} \left(- \frac{\sqrt{5}}{4} - \frac{1}{4}\right)}{2} + \frac{2^{\frac{9}{10}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2} \\&\approx -0.75483955 + 0.54842303 i\\x &= \frac{2^{\frac{9}{10}} \left(- \frac{\sqrt{5}}{4} - \frac{1}{4}\right)}{2} - \frac{2^{\frac{9}{10}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2} \\&\approx -0.75483955 -0.54842303 i\\x &= \frac{2^{\frac{9}{10}} \cdot \left(\frac{1}{4} - \frac{\sqrt{5}}{4}\right)}{2} - \frac{2^{\frac{9}{10}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2} \\&\approx -0.28832305 -0.88736711 i\\x &= \frac{2^{\frac{9}{10}} \left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right)}{2} - \frac{2^{\frac{9}{10}} i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2} \\&\approx 0.28832305 -0.88736711 i\\x &= \frac{2^{\frac{9}{10}} \cdot \left(\frac{1}{4} + \frac{\sqrt{5}}{4}\right)}{2} - \frac{2^{\frac{9}{10}} i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2} \\&\approx 0.75483955 -0.54842303 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.