4.3+2.7+1.6+0.9+2.7+1.8

asked by guest
on Nov 20, 2024 at 1:11 am



You asked:

Evaluate the expression: \(4.3 + 2.7 + 1.6 + 0.9 + 2.7 + 1.8\)

MathBot Answer:

\[ 4.3 + 2.7 + 1.6 + 0.9 + 2.7 + 1.8 = 14 \]


The sum can be computed by rewriting each term over a common denominator, where the least common denominator of \(\frac{4}{1}\), \(\frac{3}{10}\), \(\frac{2}{1}\), \(\frac{7}{10}\), \(\frac{1}{1}\), \(\frac{6}{10}\), \(\frac{9}{10}\), \(\frac{2}{1}\), \(\frac{7}{10}\), \(\frac{1}{1}\), and \(\frac{8}{10}\) is \(10\). \[ \begin{aligned} 4.3 + 2.7 + 1.6 + 0.9 + 2.7 + 1.8 &= \frac{4 \cdot 10}{1 \cdot 10} + \frac{3 \cdot 1}{10 \cdot 1} + \frac{2 \cdot 10}{1 \cdot 10} + \frac{7 \cdot 1}{10 \cdot 1} + \frac{1 \cdot 10}{1 \cdot 10} + \frac{6 \cdot 1}{10 \cdot 1} + \frac{9 \cdot 1}{10 \cdot 1} + \frac{2 \cdot 10}{1 \cdot 10} + \frac{7 \cdot 1}{10 \cdot 1} + \frac{1 \cdot 10}{1 \cdot 10} + \frac{8 \cdot 1}{10 \cdot 1} \\ &= \frac{40 + 3 + 20 + 7 + 10 + 6 + 9 + 20 + 7 + 10 + 8}{10} \\ &= \frac{140}{10} \\&= 14 \end{aligned} \]