x^2yz+xy^2z+xyz^2
You asked:
Evaluate the expression: \({x}^{2} \cdot y z + x \cdot {y}^{2} \cdot z + x y \cdot {z}^{2}\)
MathBot Answer:
Evaluated
\(\displaystyle {x}^{2} \cdot y z + x \cdot {y}^{2} \cdot z + x y \cdot {z}^{2} = x^{2} y z + y^{2} x z + z^{2} x y \)
Factored
\[{x}^{2} \cdot y z + x \cdot {y}^{2} \cdot z + x y \cdot {z}^{2} = x y z \left(x + y + z\right)\]