find the derivative of x^coshx
asked by guest on Mar 29, 2025 at 11:29 pm
You asked:
MathBot Answer:
ddx[xcosh(x)]=xcosh(x)(log(x)sinh(x)+cosh(x)x)\frac{d}{d x}\left[{x}^{\cosh\left( x \right)}\right] = x^{\cosh{\left(x \right)}} \left(\log{\left(x \right)} \sinh{\left(x \right)} + \frac{\cosh{\left(x \right)}}{x}\right)dxd[xcosh(x)]=xcosh(x)(log(x)sinh(x)+xcosh(x))