(0.05-x)(0.05-x)
You asked:
Evaluate the expression: \(\left(0.05 - x\right) \cdot \left(0.05 - x\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(0.05 - x\right) \cdot \left(0.05 - x\right) = \left(\frac{1}{20} - x\right)^{2} \)
Expanded
\[\left(0.05 - x\right) \cdot \left(0.05 - x\right) = x^{2} - \frac{x}{10} + \frac{1}{400}\]
Factored
\[\left(0.05 - x\right) \cdot \left(0.05 - x\right) = \frac{\left(20 x - 1\right)^{2}}{400}\]